Download OpenAPI specification:
Create a dataset for a model to train on and return the dataset ID. If the 'data' parameter is not given in the JSON request body then it will be assumed that the data is to be uploaded later in chunks. In this case the parameter 'status' in the dataset metadata will be set to 'uploading'. If 'data' is provided, the 'status' will be set to 'pending' while the dataset is ingested into the datastore. When finished, the final 'status' the dataset enters will be 'uploaded'. Datasets with more than 10,000 columns are not currently supported and cannot be uploaded.
name required | string |
tags | Array of strings unique Optional tags to attach to the dataset |
notes | string An optional free field for notes about the model |
revisesId | string The UUID of the dataset this revisesId (its parent). |
rowCount required | integer The number of rows in the array, not including column headers. |
columnHeaders required | Array of strings List of all column headers in the order they appear in the dataset. |
initialColumnHeaders | Array of strings List of initial column headers, before extensions and calculatedColumns are applied. |
Array of objects or null (CategoricalColumn) The possible categorical values for each categorical column. There cannot be more than 1023 unique categorical values per column, and each value cannot be longer than 128 characters. Categorical values can be wrapped in speech marks (") in the csv to represent more complex strings containing special characters (i.e. commas), but speech marks are not allowed to appear anywhere apart from the beginning and end of a value. Quoted categorical values cannot be used in vector categorical columns. Quoted categoricals will be reduced to a form without explicit speech marks where possible, e.g. the values of "red" and red will be treated as identical. Categorical values cannot consist of purely whitespace and cannot contain semicolons. Leading/trailing whitespace around a categorical cell will be trimmed away, although surrounding whitespace enclosed within speech marks will be preserved. Categorical values also cannot be words reserved for special numerical types, such as NaN, +NaN, -NaN and further variations. Categorical integers are deprecated, please use string values instead. | |
Array of objects or null (OrdinalColumn) The possible ordinal values for each ordinal column. | |
descriptorColumns required | Array of integers Items Enum: 0 1 List of length equal to the number of columns where each element is 1 or 0. A value of 1 denotes that the corresponding column is a descriptor column. A descriptor column is an input-only column whose values will not need to be predicted. |
autoDetectCompleteColumns | boolean Default: false Whether to automatically tag descriptors in the dataset with no missing values as completeColumns or not. If set to 'true', then completeColumns cannot be specified. |
completeColumns | Array of integers Items Enum: 0 1 List of length equal to the number of columns where each element is 1 or 0. A value of 1 denotes that the corresponding column is a "complete column". This means the column must have no missing values in the dataset. It is also recommended to not ask a model trained on this dataset to make predictions with missing values in a "complete column". All "complete columns" must be descriptor columns as well. Marking columns as "complete columns" can significantly speed up model training. If |
Array of objects non-empty unique Additional columns to be added to the dataset using an closed-form expression of other columns. They will be calculated for each row before being passed to Alchemite for training or predicting values. If any columns referenced in the expression are missing, the value of the calculated column in that row will also be missing. Each calculated column's expression may only reference columns in the original dataset, or those defined earlier in the list. The column name must not already appear in the dataset. No referenced column may be categorical. Each new column will be a non-complete descriptor column, unless all referenced columns are complete, when it will be a complete descriptor column. If present, calculated columns will be inserted as the last columns of the dataset. | |
measurementGroups | Array of integers or null[ items >= 1 ] A "measurement group" is a group of columns that are usually measured at the same time. So when making predictions for one of these columns it is expected that the other columns in the measurement group will not be present. The measurementGroups argument can be specified to avoid training a model that relies on values in a measurement group to predict other values in the same group. measurementGroups is a list of length equal to the number columns in the training dataset specifying which measurement group (denoted by in integer) each column belongs to. The order of measurementGroups must correspond to the training dataset's 'columnHeaders' parameter. Descriptor columns should be included in measurementGroups but they will always be used, regardless of the measurement group they are in. For example, if measurementGroups=[1,2,3,1] then the first and last columns are expected to be known simultaneously and so are in the same measurement group, while the second and third columns may be known or unknown regardless of the knowledge of other columns and so are in their own measurement groups. If measurementGroups is not provided then it is assumed that every column is in its own measurement group. |
data | string The CSV specification we conform to can be found at https://www.rfc-editor.org/rfc/rfc4180. A string in CSV format corresponding to a 2D array with row and column headers. Row and column headers must be unique. Row and column headers containing leading/trailing whitespace will not be trimmed and will be interpreted as they appear in the data. Categorical and vector values are defined outside of the set specification, although rules for their implementation can be found under their respective sections. Sets of 2D vectors can be included by mapping each axis to a column and separating the values corresponding to each vector with a semicolon. If these vectors are used in the dataset then the columns which are paired as vectors must be provided in the 'vectorPairs' argument as part of the POST request. In the example below the 'time' and 'temperature' columns are paired as vectors so in the first line their values map to the vectors (0,10), (1,28), (2,35), (4,42). , heat applied, time , temperature A, 30 , 0;1;2;4, 10;28;35;42 B, 10 , 0;5 , 10;18 |
vectorPairs | Array of strings or null non-empty unique [ items = 2 items ] Deprecated A list of pairs of column names. The columns in each pair are the axes for a 2D coordinate system. Deprecated, it is recommended that series-based data is split out over separate columns for each series point. |
Array of ExtensionInfocol (object) or Extension (object) Specify preprocessing methods to be ran on the dataset before it is uploaded.
For any Alchemite methods that require new data being provided, the required data for the extension must be present to ensure the preprocessing can be done on the new data to match the dataset.
Alchemite can then use any generated data from the preprocessing step to make more informed predictions.
Use of extensions requires the equivalent alchemiteapi.extensions. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "rowCount": 0,
- "columnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "initialColumnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "categoricalColumns": [
- {
- "name": "C",
- "values": [
- "small",
- "medium",
- "large"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 11.2
]
}
], - "descriptorColumns": [
- 1,
- 1,
- 1,
- 0,
- 0
], - "autoDetectCompleteColumns": false,
- "completeColumns": [
- 1,
- 0,
- 1,
- 0,
- 0
], - "calculatedColumns": [
- {
- "name": "my calculated column",
- "expression": {
- "sum": [
- {
- "ref": [
- "Si"
]
}, - {
- "lit": [
- 5
]
}, - {
- "ref": [
- "Ni"
]
}
]
}
}, - {
- "name": "my other calculated column",
- "expression": {
- "if": {
- "<": [
- {
- "ref": [
- "my calculated column"
]
}, - {
- "lit": [
- 10
]
}
]
}, - "then": {
- "sin": [
- {
- "ref": [
- "Ni"
]
}
]
}, - "else": {
- "ref": [
- "my calculated column"
]
}
}
}
], - "measurementGroups": [
- 1,
- 2,
- 3,
- 1,
- 4
], - "data": ",C,Ni,Si,Young's modulus,Resistivity\nCarbon steel 1,0.105,0,0,209.9,14.4\nCarbon steel 2,0.2,,0,,17\nLow alloy steel,,0,0.25,206.4,22.40\n",
- "vectorPairs": [
- [
- "time",
- "temperature"
], - [
- "distance",
- "strength"
]
], - "extensions": [
- {
- "name": "informational",
- "arguments": {
- "informationalColumns": [
- "string"
]
}
}
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
[- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "status": "uploading",
- "detail": "string",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "rowCount": 0,
- "columnCount": 0,
- "columnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "initialColumnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "categoricalColumns": [
- {
- "name": "C",
- "values": [
- "small",
- "medium",
- "large"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 11.2
]
}
], - "columnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "1",
- "2",
- "3"
], - "mode": "2",
- "numSamples": 5
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my other calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17
}
], - "descriptorColumns": [
- 1,
- 1,
- 1,
- 0,
- 0
], - "completeColumns": [
- 1,
- 0,
- 1,
- 0,
- 0
], - "measurementGroups": [
- 1,
- 2,
- 3,
- 1,
- 4
], - "columnFractionDataPresent": [
- 1,
- 1,
- 1,
- 0.8,
- 0.3
], - "vectorPairs": [
- [
- "time",
- "temperature"
], - [
- "distance",
- "strength"
]
], - "modelCount": 0,
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "extensions": [
- {
- "name": "informational",
- "arguments": {
- "informationalColumns": [
- "string"
]
}
}
]
}
]
Returns all datasets matching the query passed.
offset | integer >= 0 Default: 0 The number of items to skip before starting to collect the result set. |
limit | integer [ 1 .. 100 ] Default: 20 The number of items to return. |
Array of objects = 1 items Sort the result by the dataset's attributes. | |
object non-empty Filter datasets based on their attributes. Note that currently each filter is AND'ed. |
{- "sort": [
- {
- "name": "name",
- "direction": "asc"
}
], - "filters": {
- "name": "string",
- "status": "processing",
- "tags": [
- "string"
], - "rowCount": 0,
- "columnCount": 0,
- "groups": [
- "string"
], - "search": "string",
- "datasetIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
]
}
}
{- "total": 0,
- "result": [
- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "status": "uploading",
- "detail": "string",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "rowCount": 0,
- "columnCount": 0,
- "columnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "initialColumnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "categoricalColumns": [
- {
- "name": "C",
- "values": [
- "small",
- "medium",
- "large"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 11.2
]
}
], - "columnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "1",
- "2",
- "3"
], - "mode": "2",
- "numSamples": 5
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my other calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17
}
], - "descriptorColumns": [
- 1,
- 1,
- 1,
- 0,
- 0
], - "completeColumns": [
- 1,
- 0,
- 1,
- 0,
- 0
], - "measurementGroups": [
- 1,
- 2,
- 3,
- 1,
- 4
], - "columnFractionDataPresent": [
- 1,
- 1,
- 1,
- 0.8,
- 0.3
], - "vectorPairs": [
- [
- "time",
- "temperature"
], - [
- "distance",
- "strength"
]
], - "modelCount": 0,
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "extensions": [
- {
- "name": "informational",
- "arguments": {
- "informationalColumns": [
- "string"
]
}
}
]
}
]
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
{- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "status": "uploading",
- "detail": "string",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "rowCount": 0,
- "columnCount": 0,
- "columnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "initialColumnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "categoricalColumns": [
- {
- "name": "C",
- "values": [
- "small",
- "medium",
- "large"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 11.2
]
}
], - "columnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "1",
- "2",
- "3"
], - "mode": "2",
- "numSamples": 5
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my other calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17
}
], - "descriptorColumns": [
- 1,
- 1,
- 1,
- 0,
- 0
], - "completeColumns": [
- 1,
- 0,
- 1,
- 0,
- 0
], - "measurementGroups": [
- 1,
- 2,
- 3,
- 1,
- 4
], - "columnFractionDataPresent": [
- 1,
- 1,
- 1,
- 0.8,
- 0.3
], - "vectorPairs": [
- [
- "time",
- "temperature"
], - [
- "distance",
- "strength"
]
], - "modelCount": 0,
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "extensions": [
- {
- "name": "informational",
- "arguments": {
- "informationalColumns": [
- "string"
]
}
}
]
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
name | string |
tags | Array of strings unique Optional tags to attach to the dataset. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the dataset |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
[- {
- "chunkNumber": 0,
- "rowCount": 0,
- "columnCount": 0,
- "createdAt": 0,
- "status": "uploading",
- "detail": "string"
}
]
Delete all the chunks associated with this dataset upload
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Upload a subset of rows from the full dataset as a CSV file with row and column headers. If a chunk with this chunkNumber already exists then replace it.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
chunk_number required | integer An integer which identifies this chunk of data |
A file in CSV format corresponding to a 2D array with row and column headers. The column headers must be the same as the columnHeaders list provided for "POST /datasets" or "POST /models/{id}/dataset" and in the same order.
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
chunk_number required | integer An integer which identifies this chunk of data |
{- "chunkNumber": 0,
- "rowCount": 0,
- "columnCount": 0,
- "createdAt": 0,
- "status": "uploading",
- "detail": "string"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
chunk_number required | integer An integer which identifies this chunk of data |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Collate all the uploaded chunks into the final dataset. This will set the status of the dataset to 'uploaded'.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Download the dataset as a CSV file. The columns may not be in the same order as they were given at upload. If the dataset uses extensions then this csv will have all columns that appeared during the extension (eg if a column was removed and another added, then the CSV will contain both).
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Reduce the dimensionality of a dataset down to a specified number of dimensions through PCA or UMAP. The dataset being reduced must have at least 5 rows and at most 50,000 rows. There must also be fewer than 10,000 columns and fewer than 5,000,000 cells overall. Vector columns are not supported and will be ignored during reduction.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
required | Model-based Reduction Body (object) or Model-based Reduction Body for multiple Data Types (object) or Dataset-based Reduction Body (object) or Dataset-based Reduction Body for multiple Data Types (object) Information regarding the data to be reduced. |
required | PCA Reduction Body (object) or UMAP Reduction Body (object) or Auto UMAP Reduction Body (object) The method of dimensionality reduction and the appropriate parameters. |
{- "reductionData": {
- "modelID": "00112233-4455-6677-8899-aabbccddeeff",
- "reductionDataType": "dataset",
- "columnType": "all columns"
}, - "reductionMethod": {
- "method": "UMAP",
- "dimensions": 2,
- "numNeighbours": 3,
- "minimumDistance": 0.1
}
}
{- "reductionCoordinates": {
- "dimensions": 2,
- "x": [
- 1,
- 2,
- 3
], - "y": [
- 1.1,
- 2.2,
- 3.3
], - "cluster": [
- 0,
- 0,
- 1
], - "clusterDivergence": [
- {
- "col1": 0,
- "col2": 1
}, - {
- "col1": 0.5,
- "col2": 0.5
}
]
}, - "reductionMetadata": {
- "reductionDataType": "dataset",
- "method": "UMAP",
- "sources": [
- {
- "rowID": "Carbon1"
}, - {
- "rowID": "Carbon2"
}, - {
- "rowID": "Carbon3"
}
]
}
}
Get all calculated column expressions for a given dataset
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
[- {
- "name": "my calculated column",
- "expression": {
- "sum": [
- {
- "ref": [
- "Si"
]
}, - {
- "lit": [
- 5
]
}, - {
- "ref": [
- "Ni"
]
}
]
}
}, - {
- "name": "my other calculated column",
- "expression": {
- "if": {
- "<": [
- {
- "ref": [
- "my calculated column"
]
}, - {
- "lit": [
- 10
]
}
]
}, - "then": {
- "sin": [
- {
- "ref": [
- "Ni"
]
}
]
}, - "else": {
- "ref": [
- "my calculated column"
]
}
}
}
]
Get all column groups for a given dataset
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
[- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "Ingredient Set 1",
- "columns": [
- "Carbon",
- "Chromium",
- "Iron"
]
}, - {
- "id": "00332211-5544-7766-9988-ffeeddccbbaa",
- "name": "Ingredient Set 1",
- "columns": [
- "Helium",
- "Magnesium",
- "Uranium"
]
}
]
Create a new column group for a dataset
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
name required | string non-empty Name of the column group. Must be unique |
columns required | Array of strings unique List of the columns in the column group |
{- "name": "string",
- "columns": [
- "string"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Create multiple new column groups for a dataset
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
required | Array of objects (Request object for column groups) non-empty |
{- "columnGroups": [
- {
- "name": "string",
- "columns": [
- "string"
]
}
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get specific column group for a given dataset
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
column_group_id required | string <uuid> Unique ID of the column group |
{- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "Ingredient Set 1",
- "columns": [
- "Carbon",
- "Chromium",
- "Iron"
]
}
Update a column group
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
column_group_id required | string <uuid> Unique ID of the column group |
name | string non-empty New name of the column group. Will replace the previous name. Must be unique |
columns | Array of strings unique List of the new columns in the column group. Will replace the previous column list for the group |
{- "name": "string",
- "columns": [
- "string"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Delete a column group
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
column_group_id required | string <uuid> Unique ID of the column group |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Returns histograms for provided columns
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the dataset. |
minBins | integer [ 1 .. 200 ] Default: 1 The mininum number of bins to return. Must be equal to or below 'max_bins'. |
maxBins | integer [ 1 .. 200 ] Default: 30 The maxinum number of bins to return. Must be equal to or above 'min_bins'. |
columns | Array of strings non-empty The columns to return the histogram for. If not given, will return the histogram for all columns. |
{- "minBins": 1,
- "maxBins": 100,
- "columns": [
- "Continuous Column",
- "Categorical Column",
- "Empty Column"
]
}
{- "Continuous Column": {
- "min": 0,
- "step": 0.1,
- "counts": [
- 10,
- 0,
- 5
]
}, - "Categorical Column": {
- "Category 1": 10,
- "Category 2": 1,
- "Category 3": 5
}, - "Empty Column": null
}
Create new reference to a favourite dataset
datasetID required | string <uuid> The ID of the dataset being marked as a favourite |
modelID required | string <uuid> The ID of the model the saved dataset relates to |
{- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "modelID": "17448b37-e359-404a-84aa-35f10765ba44"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Returns specified datasets marked as favourited
object non-empty Filter favourite datasets based on model attributes. |
{- "filters": {
- "transitiveModelId": "00112233-4455-6677-8899-aabbccddeeff"
}
}
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "modelID": "17448b37-e359-404a-84aa-35f10765ba44"
}
]
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the favourite resource. |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "modelID": "17448b37-e359-404a-84aa-35f10765ba44"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the favourite resource. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "status": "uploading",
- "detail": "string",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "rowCount": 0,
- "columnCount": 0,
- "columnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "initialColumnHeaders": [
- "C",
- "Ni",
- "Si",
- "Young's modulus",
- "Resistivity"
], - "categoricalColumns": [
- {
- "name": "C",
- "values": [
- "small",
- "medium",
- "large"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 11.2
]
}
], - "columnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "1",
- "2",
- "3"
], - "mode": "2",
- "numSamples": 5
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "continuous",
- "name": "my other calculated column",
- "calculatedColumn": true,
- "readOnly": true,
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17
}
], - "descriptorColumns": [
- 1,
- 1,
- 1,
- 0,
- 0
], - "completeColumns": [
- 1,
- 0,
- 1,
- 0,
- 0
], - "measurementGroups": [
- 1,
- 2,
- 3,
- 1,
- 4
], - "columnFractionDataPresent": [
- 1,
- 1,
- 1,
- 0.8,
- 0.3
], - "vectorPairs": [
- [
- "time",
- "temperature"
], - [
- "distance",
- "strength"
]
], - "modelCount": 0,
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "extensions": [
- {
- "name": "informational",
- "arguments": {
- "informationalColumns": [
- "string"
]
}
}
]
}
Download the dataset as a CSV file. The columns may not be in the same order as they were given at upload.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Create new model and return the model ID associated with it.
A JSON object containing the name and training method for the model. The dataset ID of the dataset that will be used to train the model must be provided under the key trainingDatasetId
.
name required | string |
tags | Array of strings unique Optional tags to attach to the model |
notes | string An optional free field for notes about the dataset |
projectId | string <uuid> The project this model belongs to. The user must have permission to see the respective project to set this value |
status | string (ModelStatus) Enum: "new" "optimizing hyperparameters" "training" "trained" "failed" "pending" Status of the model |
revisesId | string The UUID of the model this revisesID (its parent). |
trainingMethod required | string Value: "alchemite" The method used to train the model. |
trainingDatasetId | string <uuid> ID of the dataset used to train the model. |
validationMethod | string (ModelValidationMethods) Enum: "none" "80/20" "5-fold" "custom" Validation method for the model |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "status": "new",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "trainingMethod": "alchemite",
- "trainingDatasetId": "00112233-4455-6677-8899-aabbccddeeff",
- "validationMethod": "none"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
[- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "status": "new",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "trainingMethod": "alchemite",
- "trainingMethodVersion": "20180817",
- "trainingDatasetId": "00112233-4455-6677-8899-aabbccddeeff",
- "trainingStartTime": 0,
- "trainingCompletionTime": 0,
- "trainingProgress": 100,
- "hyperparameterOptimizationMethod": "none",
- "bespokeColumnHyperparameters": true,
- "hyperparameterOptimizationStartTime": 0,
- "hyperparameterOptimizationCompletionTime": 0,
- "hyperparameterOptimizationProgress": 100,
- "trainingRealTime": 0,
- "trainingCPUTime": 0,
- "trainingPeakMemoryUsage": 0,
- "trainingHyperparameters": { },
- "trainingColumnHeaders": [
- "string"
], - "trainingInitialColumnHeaders": [
- "string"
], - "trainingColumnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17,
- "coefficientOfDetermination": 0.8
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "red",
- "blue",
- "green"
], - "mode": "blue",
- "numSamples": 5,
- "MCC": 0.7
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0,
- "MCC": null
}, - {
- "dataType": "continuous",
- "name": "C + Ch",
- "calculatedColumn": true,
- "readOnly": true,
- "max": 3,
- "min": 1,
- "mean": 2,
- "numSamples": 17,
- "coefficientOfDetermination": null
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17,
- "coefficientOfDetermination": null
}
], - "categoricalColumns": [
- {
- "name": "Ni",
- "values": [
- "big",
- "small"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 20.5
]
}
], - "fileSize": 0,
- "validationMethod": "none",
- "validationMetric": 1,
- "validationRSquared": 1,
- "validationTargetColumns": [
- "Resistivity",
- "Tensile Strength"
], - "loaded": true,
- "estimatedModelMemory": 0,
- "virtualTraining": true,
- "permittedColumnRelationships": [
- {
- "name": "string",
- "allow": [
- "string"
], - "disallow": [
- "string"
]
}
], - "hyperoptSampleRequest": 0,
- "virtualExperimentValidation": true,
- "trainingDatasetOutliersJobId": "3a2dfb4f-1a3f-4d86-86c2-bfd7491a36b4",
- "trainingDatasetOutliersJobStatus": "pending",
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "detail": "string"
}
]
Returns all models matching the query passed.
offset | integer >= 0 Default: 0 The number of items to skip before starting to collect the result set. |
limit | integer [ 1 .. 100 ] Default: 20 The number of items to return. |
Array of objects = 1 items Sort the result by the model attributes. | |
object non-empty Filter models based on model attributes. Note that currently each filter is AND'ed. |
{- "sort": [
- {
- "name": "name",
- "direction": "asc"
}
], - "filters": {
- "name": "string",
- "status": "new",
- "validationMetric": 0,
- "validationMethod": "none",
- "virtualTraining": true,
- "virtualExperimentValidation": true,
- "trainingCompletionTime": 0,
- "trainingMethodVersion": "string",
- "groups": [
- "string"
], - "owner": true,
- "createdAt": 0,
- "tags": [
- "string"
], - "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "unrevised": false,
- "transitiveModelId": "00112233-4455-6677-8899-aabbccddeeff",
- "excludeModelId": "00112233-4455-6677-8899-aabbccddeeff",
- "search": "string"
}
}
{- "total": 0,
- "result": [
- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "status": "new",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "trainingMethod": "alchemite",
- "trainingMethodVersion": "20180817",
- "trainingDatasetId": "00112233-4455-6677-8899-aabbccddeeff",
- "trainingStartTime": 0,
- "trainingCompletionTime": 0,
- "trainingProgress": 100,
- "hyperparameterOptimizationMethod": "none",
- "bespokeColumnHyperparameters": true,
- "hyperparameterOptimizationStartTime": 0,
- "hyperparameterOptimizationCompletionTime": 0,
- "hyperparameterOptimizationProgress": 100,
- "trainingRealTime": 0,
- "trainingCPUTime": 0,
- "trainingPeakMemoryUsage": 0,
- "trainingHyperparameters": { },
- "trainingColumnHeaders": [
- "string"
], - "trainingInitialColumnHeaders": [
- "string"
], - "trainingColumnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17,
- "coefficientOfDetermination": 0.8
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "red",
- "blue",
- "green"
], - "mode": "blue",
- "numSamples": 5,
- "MCC": 0.7
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0,
- "MCC": null
}, - {
- "dataType": "continuous",
- "name": "C + Ch",
- "calculatedColumn": true,
- "readOnly": true,
- "max": 3,
- "min": 1,
- "mean": 2,
- "numSamples": 17,
- "coefficientOfDetermination": null
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17,
- "coefficientOfDetermination": null
}
], - "categoricalColumns": [
- {
- "name": "Ni",
- "values": [
- "big",
- "small"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 20.5
]
}
], - "fileSize": 0,
- "validationMethod": "none",
- "validationMetric": 1,
- "validationRSquared": 1,
- "validationTargetColumns": [
- "Resistivity",
- "Tensile Strength"
], - "loaded": true,
- "estimatedModelMemory": 0,
- "virtualTraining": true,
- "permittedColumnRelationships": [
- {
- "name": "string",
- "allow": [
- "string"
], - "disallow": [
- "string"
]
}
], - "hyperoptSampleRequest": 0,
- "virtualExperimentValidation": true,
- "trainingDatasetOutliersJobId": "3a2dfb4f-1a3f-4d86-86c2-bfd7491a36b4",
- "trainingDatasetOutliersJobStatus": "pending",
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "detail": "string"
}
]
}
Get the metadata for the model. This includes, for example, ID, name, status and percentage training completion.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "status": "new",
- "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
- "revisionIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "trainingMethod": "alchemite",
- "trainingMethodVersion": "20180817",
- "trainingDatasetId": "00112233-4455-6677-8899-aabbccddeeff",
- "trainingStartTime": 0,
- "trainingCompletionTime": 0,
- "trainingProgress": 100,
- "hyperparameterOptimizationMethod": "none",
- "bespokeColumnHyperparameters": true,
- "hyperparameterOptimizationStartTime": 0,
- "hyperparameterOptimizationCompletionTime": 0,
- "hyperparameterOptimizationProgress": 100,
- "trainingRealTime": 0,
- "trainingCPUTime": 0,
- "trainingPeakMemoryUsage": 0,
- "trainingHyperparameters": { },
- "trainingColumnHeaders": [
- "string"
], - "trainingInitialColumnHeaders": [
- "string"
], - "trainingColumnInfo": [
- {
- "dataType": "continuous",
- "name": "C",
- "max": 2,
- "min": 1,
- "mean": 1.5,
- "numSamples": 3,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ch",
- "max": null,
- "min": null,
- "mean": null,
- "numSamples": 0,
- "coefficientOfDetermination": null
}, - {
- "dataType": "continuous",
- "name": "Ni",
- "max": 9,
- "min": 2,
- "mean": 5,
- "numSamples": 17,
- "coefficientOfDetermination": 0.8
}, - {
- "dataType": "categorical",
- "name": "Colour",
- "categoriesPresent": [
- "red",
- "blue",
- "green"
], - "mode": "blue",
- "numSamples": 5,
- "MCC": 0.7
}, - {
- "dataType": "categorical",
- "name": "Size",
- "categoriesPresent": [ ],
- "mode": null,
- "numSamples": 0,
- "MCC": null
}, - {
- "dataType": "continuous",
- "name": "C + Ch",
- "calculatedColumn": true,
- "readOnly": true,
- "max": 3,
- "min": 1,
- "mean": 2,
- "numSamples": 17,
- "coefficientOfDetermination": null
}, - {
- "dataType": "opaque",
- "name": "SMILES Column",
- "writeOnly": true
}, - {
- "dataType": "continuous",
- "name": "Molecule Weight",
- "readOnly": true,
- "extensionSource": "SMILES",
- "max": 14,
- "min": 1,
- "mean": 7,
- "numSamples": 17,
- "coefficientOfDetermination": null
}
], - "categoricalColumns": [
- {
- "name": "Ni",
- "values": [
- "big",
- "small"
]
}
], - "ordinalColumns": [
- {
- "name": "Settings",
- "values": [
- 1,
- 5,
- 20.5
]
}
], - "fileSize": 0,
- "validationMethod": "none",
- "validationMetric": 1,
- "validationRSquared": 1,
- "validationTargetColumns": [
- "Resistivity",
- "Tensile Strength"
], - "loaded": true,
- "estimatedModelMemory": 0,
- "virtualTraining": true,
- "permittedColumnRelationships": [
- {
- "name": "string",
- "allow": [
- "string"
], - "disallow": [
- "string"
]
}
], - "hyperoptSampleRequest": 0,
- "virtualExperimentValidation": true,
- "trainingDatasetOutliersJobId": "3a2dfb4f-1a3f-4d86-86c2-bfd7491a36b4",
- "trainingDatasetOutliersJobStatus": "pending",
- "createdAt": 0,
- "sharedThrough": [
- "string"
], - "sharing": {
- "directGroups": [
- "string"
], - "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "detail": "string"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
name | string |
tags | Array of strings unique Optional tags to attach to the model. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the model |
projectId | string or null <uuid> The project this model belongs to. The user must have permission to see the respective project to set this value. Set to null to remove from current project. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Delete the model and stop any in progress training
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get the validation splits used for a model. Requires that the model has been trained, and was not trained with validation
set to 'none'.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "validationSplits": [
- {
- "name": "string",
- "testRowIDs": [
- "string"
], - "trainRowIDs": [
- "string",
- "string"
]
}
]
}
Create a copy of the model which is identical except for having a new model ID. The model ID of the copy will be returned in the response.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Upload a zip file, as provided by GET /models/{id}/download, which will set the data and metadata of a new model. If the model ID included in the provided metadata is not already assigned to another model then it will be used as the ID for the new model, otherwise a new unique ID will be created for the new model. In either case a successful response will return the model ID of the new model.
Not enabled by default. Please contact Intellegens if required
A .zip file containing the model data and metadata, as provided by GET /models/{id}/download.
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Download the model data and metadata as a zip file
Not enabled by default. Please contact Intellegens if required
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Train the model on the dataset corresponding to the 'trainingDatasetId' parameter in the model metadata. The dataset must have the status 'processing' or 'uploaded' to begin to have a model trained on it.
If hyperparameterOptimization
is 'none' then the model 'status' will be first set to 'pending' and then 'training' once the model has started training. Otherwise the model 'status' will be first set to 'optimizing hyperparameters' and then once the optimal hyperparameters have been found set to 'pending' and then 'training'. The model status will be set to 'trained' once it has finished training and is ready to use. Use GET /model/{id} to get model status as well as percentage training and hyperparameter optimization completion.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
validation | string Default: "none" Enum: "none" "80/20" "5-fold" "custom" Methods for validating the model using the provided dataset. If set to "custom", |
validationTargetColumns | Array of strings or null non-empty unique A list of the training dataset's column names that the model's validation metric will be the median average over. Cannot include descriptor columns. If not provided then the model's validation metric will be the median average over all non-descriptor columns. |
Array of objects (Validation Split) [ 1 .. 10 ] items unique A list of test-train pairs, describing the row IDs of the training dataset to include in each validation split.
Must be provided exactly when | |
hyperparameterOptimization | string Default: "none" Enum: "none" "random" "TPE" Search method for finding the optimal parameters to use when training the model. If 'none' then the parameters as specified by the 'hyperparameters' argument will be used to train the model. If 'hyperparameterOptimization' is not 'none' then 'validation' must also be not 'none'. |
bespokeColumnHyperparameters | boolean Default: true Whether to use bespoke hyperparameters for each target column. If false, hyperparameters are shared between columns. Defaults to true. |
hyperparameters | object The hyperparameters which Alchemite will use when training. If 'hyperparameterOptimization' is 'none', these hyperparameters will be used for training, otherwise the hyperparameters will be used as a starting point for optimization. If no argument is provided for this parameter and the model was previously trained then the existing hyperparameters will be used to train the model, otherwise Alchemite's default hyperparameters will be used instead. |
fractionDataPresent | Array of numbers[ items [ 0 .. 1 ] ] The fraction of data expected to be in each column of the datasets which the model will make predictions from. The list 'fractionDataPresent' should be ordered corresponding to the training dataset's 'columnHeaders' parameter. |
virtualExperimentValidation | boolean Default: false If true then only the descriptor columns will be used to make predictions when computing the validation metric. |
virtualTraining | boolean Default: false If true then only the descriptor columns will be used as input in the first iteration of training |
Array of objects non-empty unique An array of objects defining which columns the ML model is able to use or not use as inputs when modelling specific columns. The "allow" and "disallow" arrays must contain distinct columns. They do not need to contain all columns in the dataset. If columns are not allowed in either "allow" nor "disallow", the model will use default behaviors:
if virtualTraining is false: This is equivalent to passing "allow": list_of_all_columns for every column in the dataset. Therefore, passing allow when virtualTraining is false has no effect on the model. However, columns passed within "disallow" will have an effect. if virtualTraining is true: This is equivalent to passing "allow": list_of_all_descriptors and passing "disallow" for all non descriptors. Therefore, passing descriptor columns in the "allow" list has no effect on the model. Similarly, passing non descriptor columns in the "disallow" list has no effect on the model. However, columns passed within "allow" for non descriptors, and "disallow" for descriptors will have an effect. Interaction with Measurement Groups: If measurement groups are specified for the training dataset that are incompatible, a 400 response is returned. This happens when a column defined in "name" and one or more columns defined in "allow" are part of the same measurement group. | |
enableTrainingDatasetOutliers | boolean or null Default: null If true then compute the outliers in the training dataset using the validation sub-models.
If If null then will be set to true if Once |
maxNumberSamples | integer [ 1 .. 2000 ] Default: 300 The maximum number of hyperparameter optimization samples to use for training the model. Training may stop before the specified amount of samples if an ideal set of hyperparameters if found early. If 'hyperparameterOptimization' is 'none' then 'maxNumberSamples' will be ignored. |
{- "validation": "none",
- "validationTargetColumns": [
- "Resistivity",
- "Tensile Strength"
], - "validationSplits": [
- {
- "name": "string",
- "testRowIDs": [
- "string"
], - "trainRowIDs": [
- "string"
]
}
], - "hyperparameterOptimization": "none",
- "bespokeColumnHyperparameters": true,
- "hyperparameters": { },
- "fractionDataPresent": [
- 1
], - "virtualExperimentValidation": false,
- "virtualTraining": false,
- "permittedColumnRelationships": [
- {
- "name": "string",
- "allow": [
- "string"
], - "disallow": [
- "string"
]
}
], - "enableTrainingDatasetOutliers": null,
- "maxNumberSamples": 300
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Load the model into memory so that future "/models/{id}/impute" requests will be faster. The "loaded" property in the model metadata shows whether the model is currently loaded or not. The model will be removed from memory if "timeout" seconds have passed since the model was loaded into memory and the model has not been used for "timeout" seconds. Calling the "/models/{id}/load" endpoint for an already loaded model will reset the timeout.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
timeout | integer Default: 60 The number of seconds the model should wait in memory without receiving a request before being unloaded from memory. |
{- "timeout": 60
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Remove a loaded model from memory. Impute requests can still be sent but the model will be loaded into memory at request time.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Generate a global analysis of how important each input is for predicting each output.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
outputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as rows in the CSV response. If not given then all the columns in the training dataset will be included in the order of the model's |
inputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as columns in the CSV response. If not given then all the columns in the training dataset will be included in the order of the model's |
useOnlyDescriptors | boolean Default: false A boolean flag that will return the importance values considering only descriptor-to-target relationships if set to true. Otherwise, target-to-target importance will also be considered. |
{- "outputColumns": [
- "w",
- "y",
- "z"
], - "inputColumns": [
- "w",
- "x",
- "y",
- "z"
], - "useOnlyDescriptors": false
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Given an incomplete dataset return the predictions for the missing values together with the corresponding uncertainties or full probability distribution for each prediction.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
returnProbabilityDistribution | boolean Default: false If true then the full probability distribution for each prediction will be returned, if false then the predicted value and uncertainty derived from that distribution will be returned instead. |
datasetID | string <uuid> The ID of a dataset to impute. The dataset must have the same column headers as the model's training dataset. Only one of 'datasetID' and 'data' should be provided. |
returnRowHeaders | boolean Default: false If true then row headers will be returned in the response csv. If true and the 'data' property is given then it is required that the first column of csv data are unique row headers. |
returnColumnHeaders | boolean Default: false If true then column headers will be returned in the response csv. |
data | string An array of CSV data with column headers. Only one of 'datasetID' and 'data' should be provided. If returnRowHeaders is true then the first column of the CSV should contain the unique row headers which identify each row. |
{- "returnProbabilityDistribution": false,
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "returnRowHeaders": false,
- "returnColumnHeaders": false,
- "data": "x,y,x+y,x-y\n1,0.2,,0.8\n0.5,0.3,,\n"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Request the influence model inputs have on a given output. These influence values are calculated using the rows of the training dataset, representing how much of the output each input is responsible for.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
outputColumn required | string The output column to retrieve the influence for |
{- "outputColumn": "string"
}
{- "name": "string",
- "values": {
- "property1": {
- "influenceValues": [
- 0
], - "inputValues": [
- 0
], - "normalizationValues": {
- "min": 0,
- "max": 0
}, - "rowIDs": [
- "string"
]
}, - "property2": {
- "influenceValues": [
- 0
], - "inputValues": [
- 0
], - "normalizationValues": {
- "min": 0,
- "max": 0
}, - "rowIDs": [
- "string"
]
}
}
}
Analyse the model's predictions against a given dataset and, optionally, return the predictions themselves
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
datasetID required | string <uuid> The ID of a dataset to use to make predictions. The dataset must have the same column headers as the model's training dataset. Only one of 'datasetID' and 'data' should be provided. |
returnPredictions | boolean Default: true If true then the predicted values will be included in the response. If false only the analysis of those predictions will be returned |
returnColumnHeaders | boolean Default: false If true then the predicted values, if returned, will include column headers on the first row. |
virtualExperimentValidation | boolean Default: false If true then only the values in descriptor columns will be used to make predictions |
{- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "returnPredictions": true,
- "returnColumnHeaders": false,
- "virtualExperimentValidation": false
}
{- "meanValidationMetric": 1,
- "meanValidationMetricUncertainty": 0,
- "medianValidationMetric": 1,
- "medianValidationMetricUncertainty": 0,
- "meanCoefficientOfDetermination": 1,
- "meanCoefficientOfDeterminationUncertainty": 0,
- "medianCoefficientOfDetermination": 1,
- "medianCoefficientOfDeterminationUncertainty": 0,
- "meanRMSE": 0,
- "meanRMSEUncertainty": 0,
- "medianRMSE": 0,
- "medianRMSEUncertainty": 0,
- "totalUncertaintyDivergence": 0,
- "columnAnalytics": [
- {
- "name": "string",
- "numValidationSamples": 0,
- "coefficientOfDetermination": 1,
- "RMSE": 0,
- "MAPE": 0,
- "MCC": -1,
- "F1": 1,
- "PPV": 1,
- "TPR": 1,
- "ACC": 1,
- "CKC": -1,
- "uncertaintyDivergence": 0
}
], - "predictions": "A,1.0000,.2000,,.8000,.9333,.1000,,.8333,.0943,.0816,,.1247\nB,.5000,.3000,,,.5600,.6000,,,.1840,.2828,,\n"
}
Given a dataset return the predictions for the given values in the dataset with the uncertainties or full probability distribution for each prediction.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
returnProbabilityDistribution | boolean Default: false If true then the full probability distribution for each prediction will be returned, if false then the predicted value and uncertainty derived from that distribution will be returned instead. |
datasetID | string <uuid> The ID of a dataset to use to make predictions. The dataset must have the same column headers as the model's training dataset. Only one of 'datasetID' and 'data' should be provided. |
returnRowHeaders | boolean Default: false If true then row headers will be returned in the response csv. If true and the 'data' property is given then it is required that the first column of csv data are row headers. |
returnColumnHeaders | boolean Default: false If true then column headers will be returned in the response csv. |
data | string An array of CSV data with column headers. Only one of 'datasetID' and 'data' should be provided. If returnRowHeaders is true then the first column of the CSV should contain the unique row headers which identify each row. |
{- "returnProbabilityDistribution": false,
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "returnRowHeaders": false,
- "returnColumnHeaders": false,
- "data": "x,y,x+y,x-y\n1,0.2,,0.8\n0.5,0.3,,\n"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Given a dataset return the predictions for all given and missing values in the dataset with the uncertainties or full probability distribution for each prediction.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
returnProbabilityDistribution | boolean Default: false If true then the full probability distribution for each prediction will be returned, if false then the predicted value and uncertainty derived from that distribution will be returned instead. |
datasetID | string <uuid> The ID of a dataset to use to make predictions. The dataset must have the same column headers as the model's training dataset. Only one of 'datasetID' and 'data' should be provided. |
returnRowHeaders | boolean Default: false If true then row headers will be returned as the first column in the response csv. If true and the 'data' property is given then it is required that the first column of csv data are row headers. |
returnColumnHeaders | boolean Default: false If true then column headers will be returned in the response csv. |
data | string An array of CSV data with column headers. Only one of 'datasetID' and 'data' should be provided. If returnRowHeaders is true then the first column of the CSV should contain the unique row headers which identify each row. |
{- "returnProbabilityDistribution": false,
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "returnRowHeaders": false,
- "returnColumnHeaders": false,
- "data": "x,y,x+y,x-y\n1,0.2,,0.8\n0.5,0.3,,\n"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Given an input column and an output column from the model, a trendline of a specified amount of bins will be calculated. When a calculated or extension column is used as input, the underlying calculations do not alter the source columns and may not fully reflect the actual trend
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
inputColumn | string Name of the input column for the trendline calculation. This column can be either a model descriptor or non-descriptor |
outputColumn | string Name of the output column for the trendline calculation. This column must be a model non-descriptor |
binCount | integer [ 3 .. 20 ] Default: 10 The number of splits in the trendline to calculate between the two columns |
{- "inputColumn": "string",
- "outputColumn": "string",
- "binCount": 10
}
{- "x": [
- 10,
- 12,
- 14
], - "y": [
- 14.6,
- 15.6,
- 16.7
], - "uncertainties": [
- 0.4,
- 1.2,
- 0.2
]
}
Given two columns and an output column from the model, an interaction for a specified amount of bins will be calculated When a calculated or extension column is used as input(s), the underlying calculations do not alter the source columns and may not fully reflect the actual trend
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
inputColumns | Array of strings = 2 items Name two columns to calculate the interaction with respect to. These columns can be either a model descriptor or non-descriptor |
outputColumn | string Name of the output column for the interaction calculation. This column must be a model non-descriptor |
binCount | integer [ 3 .. 100 ] Default: 10 The number of splits in the trendline to calculate between the two columns |
{- "inputColumns": [
- "string",
- "string"
], - "outputColumn": "string",
- "binCount": 10
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Gets the result of an interaction request from a given job ID, where the request was made using post /models/{id}/prediction/interaction. If the job was successful, the interaction between two columns and a target output column will be returned
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "status": "failed",
- "detail": "string"
}
Compares a given array of data (complete or incomplete) with the corresponding predicted values. If a given value lies outside of the error bounds of the corresponding predicted value then it is deemed an outlier. Returns the given value of all outliers along with the corresponding predicted values, the number of standard deviations between the given and predicted values and the row and column indices of the outlier. If the outlier is part of a vector then the "Component Index" indicates which component of the vector is an outlier. If the outlier is not a vector then the "Component Index" will be 1.
If the outliers in the model's own training dataset are required then consider using
/models/{id}/training-dataset-outliers
instead
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
datasetID | string <uuid> The ID of a dataset to check for outliers. The dataset must have the same column headers as the model's training dataset. Only one of 'datasetID' and 'data' should be provided. |
data | string An array of CSV data with column headers. Only one of 'datasetID' and 'data' should be provided. |
outlierTolerance | number >= 0 Default: 1 How many standard deviations from a prediction results in a value being classified as an outlier. |
returnRowHeaders | boolean Default: false If true then a 'Row' column, containing the name of the row the outlier is on, will be included in the response CSV. If true and the 'data' property is given then it is required that the first column of the input CSV contains the row headers. |
{- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "data": "x,x^2,x^3,x^4\n3,9,72,81\n2,4,8,16\n",
- "outlierTolerance": 1,
- "returnRowHeaders": false
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Requires that the model was trained with
validation
set to80/20
or5-fold
.
Returns the validation predictions generated for assessing model performance during training. For 5-fold validation, this is the result of training 5 sub-models on 80% and predicting on the remaining 20%, such that the each row in dataset is represented in exactly one validation set. For 80/20 validation, 20% of the dataset is selected at random to form the validation set. This endpoint has been deprecated, please use PUT /models/{id}/validation-predictions instead.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Requires that the model was trained with
validation
set to80/20
or5-fold
.
Returns validation predictions for given columns so that the model training performance can be evaluated. For 5-fold validation, this is the result of training 5 sub-models on 80% and predicting on the remaining 20%, such that the each row in dataset is represented in exactly one validation set. For 80/20 validation, 20% of the dataset is selected at random to form the validation set.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
columns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as columns in the CSV response. If not given then all the columns in the training dataset will be included in the order of the model's |
{- "columns": [
- "x1",
- "x2",
- "y1",
- "y2"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Requires that the model was trained with
enableTrainingDatasetOutliers
set to true.
Compares the training dataset with the corresponding predicted values using the requested validation splits.
If the model's validationMethod
is '5-fold', each will be trained on 80% of the full dataset to identify the outliers in the remaining 20%.
If the model's validationMethod
is 'custom', each row in a test set will be checked against a model trained on the matching train set.
Please note, if validationMethod
is '80/20', only the validation 20% will report outliers, and is thus not recommended.
If a given value lies outside of the error bounds of the corresponding predicted value then it is deemed an outlier. Returns the given value of all outliers along with the corresponding predicted values, the number of standard deviations between the given and predicted values and the row and column indices of the outlier. If the outlier is part of a vector then the "Component Index" indicates which component of the vector is an outlier. If the outlier is not a vector then the "Component Index" will be 1.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
rowIDs | Array of strings non-empty unique The IDs of the rows to return outliers for. If not given then outliers for all rows in the dataset will be returned. |
{- "rowIDs": [
- "string"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get suggestions for which missing values to measure next from a given subset of rows and columns in a dataset in order to best improve subsequent predictions for a given set of target columns.
Part of the underlying algorithm uses the imputed values so a quicker response will be obtained if the
imputedData
is provided as part of the request body.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
datasetID required | string <uuid> The ID of a dataset containing at least the columns present in targetColumns or sourceColumns. |
sourceRows | Array of strings unique A list of row headers which all appear in the dataset corresponding to datasetID. Suggested measurements will only be returned from these rows. If not given then the suggestions may come from any row. |
sourceColumns | Array of strings A list of column headers which all appear in the model's training dataset. Suggested measurements will only be returned from these columns. Descriptor columns cannot be in sourceColumns. If not given then suggestions will come from all non-descriptor columns. The sourceColumns may or may not be distinct from the targetColumns. |
targetColumns | Array of strings A list of column headers which all appear in the model's training dataset. Suggested measurements will be targeted to best improve predictions for these columns. Descriptor columns cannot be in targetColumns. If not given then targetColumns will be treated as being all non-descriptor columns. The targetColumns may or may not be distinct from the sourceColumns. |
explorationExploitation | number [ 0 .. 1 ] Default: 1 The desired tradeoff between 'exploration', at 0, or 'exploitation' at 1:
|
numSuggestions | integer [ 1 .. 10000 ] Default: 1 The maximum number of suggested measurements to return that will best improve predictions for the requested targetColumns. |
sFactor | number or null [ 0 .. 1 ] Where data is mostly missing, sFactor should take low values - when data is mostly complete, it should take higher values. If not given or null then sFactor will be set automatically, which is generally recommended. Adjusting sFactor can make significant differences to the suggestions returned. |
uncertaintyWeight | number ( 0 .. 1 ] Deprecated Weighting determining the importance of uncertainties for individual data points compared to inter-column relationships when calculating suggested measurements. If 0 then only column relationships are used to produce suggestions, while if 1 then uncertainties are treated as more important. Deprecated, this parameter is no longer supported. |
{- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "sourceRows": [
- "string"
], - "sourceColumns": [
- "w",
- "x"
], - "targetColumns": [
- "x",
- "y",
- "z"
], - "explorationExploitation": 1,
- "numSuggestions": 1,
- "sFactor": 1,
- "uncertaintyWeight": 0
}
[- {
- "rowHeader": "string",
- "columnHeader": "string"
}
]
Generate a sensitivity analysis around a point. This reports how strongly each column depends on each other column at that point.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
required | Array of objects (columnValue) A single point in your parameter space described by an array of objects with key:value pairs representing the column names and their values. Every column in the model's training dataset must have a value. |
outputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as rows in the CSV response. |
inputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as columns in the CSV response. If not given then all the columns in the training dataset will be included in the order of the model's |
{- "dataPoint": [
- {
- "name": "x",
- "value": 1
}, - {
- "name": "2x",
- "value": 2
}, - {
- "name": "colour",
- "value": "red"
}
], - "outputColumns": [
- "w",
- "y",
- "z"
], - "inputColumns": [
- "w",
- "x",
- "y",
- "z"
]
}
,x,2x x,0,0.5 2x,2,0
Generate an additive sensitivity analysis around a point. This reports the additive contributions of input columns to each output column around a datapoint, similar to coefficients in a local linear regression.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
required | Array of objects (columnValueNullable) A single point in your parameter space described by an array of objects with key:value pairs representing the column names and their values. |
outputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as rows in the CSV response. |
inputColumns | Array of strings non-empty A list of the training dataset's column names to include, in the list's order, as columns in the CSV response. If not given then all the columns in the training dataset will be included in the order of the model's |
Array of objects An optional single point in your parameter space described by an array of objects with key:value pairs representing the column names and their values. It is used to set a baseline value for each column, which the additive sensitivity of the provided data point is calculated with respect to. For instance, the 'current best' entry could be provided as a reference point to compare differences to a new data point. If no specific point is given, the mean/mode of the dataset will be used. |
{- "dataPoint": [
- {
- "name": "x1",
- "value": 1
}, - {
- "name": "x2",
- "value": 2
}, - {
- "name": "y1",
- "value": null
}, - {
- "name": "y2",
- "value": "three"
}
], - "outputColumns": [
- "x1",
- "x2",
- "y1"
], - "inputColumns": [
- "x1",
- "x2",
- "y1",
- "y2"
], - "origin": [
- {
- "name": "x1",
- "value": 1
}, - {
- "name": "x2",
- "value": 2
}, - {
- "name": "y1",
- "value": null
}, - {
- "name": "y2",
- "value": 3
}
]
}
,x1,x2,y1,y2 x1,0.0,0.0,0.0,0.0 x2,0.0,0.0,0.0,0.0 y1,0.2,1.2,0.0,0.0 y2,0.275862,1.655172,2.068966,0.0
Explore over an input space and make imputations based on sampled values from provided input ranges. These resultant outputs can then be evaluated to judge how much the output changes in relation to these variable inputs. The tolerance of the output can then be evaluated based on how sensitive it is to changing inputs.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
required | object (OTSampleDefinition) non-empty The target columns and their associated ranges to sample values within. At least one column with a valid sample range must be specified. |
required | object (OTSetInputs) The columns that have a set value. |
numSamples | integer >= 1 Default: 500 The number of predictions to make during the exploration of the input range space. If using categorical values in the sampleDefinition, numSamples must be at least the length of the largest list of values. This is to ensure all categorical values are samples at least once. If using only categoricals in the sampleDefinition, if all possible combinations of categorical values can be achieved before hitting the value of numSamples, then only this many will be returned. This is to avoid re-sampling combinations that have already been seen as the results will be identical. Neither the sampleDefinition nor the setInputs may contain a calculated column |
{- "sampleDefinition": {
- "B": {
- "type": "continuous",
- "range": [
- 0,
- 5
]
}, - "Size": {
- "type": "categorical",
- "values": [
- "big",
- "small"
]
}
}, - "setInputs": {
- "A": 0.57,
- "C": 0.43,
- "Colour": "Red"
}, - "numSamples": 5
}
{- "fixedInputs": [
- {
- "name": "A",
- "value": 0.57
}, - {
- "name": "C",
- "value": 0.43
}, - {
- "name": "Colour",
- "value": "Red"
}
], - "sampledInputs": [
- {
- "name": "B",
- "values": [
- 1,
- 2,
- 3,
- 4,
- 5
]
}, - {
- "name": "Size",
- "values": [
- "big",
- "small",
- "big",
- "small",
- "big"
]
}
], - "predictedOutputs": [
- {
- "name": "D",
- "predictions": {
- "values": [
- 0.1,
- 0.4,
- 0.5,
- 0.2,
- 0.3
], - "uncertainties": [
- 0.1,
- 0.4,
- 0.5,
- 0.2,
- 0.3
]
}
}, - {
- "name": "E",
- "predictions": {
- "values": [
- 0.2,
- 0.5,
- 0.4,
- 0.2,
- 0.9
], - "uncertainties": [
- 0.43,
- 0.22,
- 0.53,
- 0.3,
- 0.1
]
}
}, - {
- "name": "Size",
- "predictions": {
- "values": [
- "Small",
- "Medium",
- "Large",
- "Small",
- "Small"
], - "uncertainties": [
- 0.43,
- 0.22,
- 0.53,
- 0.3,
- 0.1
]
}
}
]
}
For each specified column, explore over a single input space and make imputations based on sampled values from provided input ranges. These resultant outputs can then be evaluated to judge how much the output changes in relation to these variable inputs. The tolerance of each output can then be evaluated based on how sensitive they are to changing inputs.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
required | object (OTSampleDefinition) non-empty The target columns and their associated ranges to sample values within. At least one column with a valid sample range must be specified. |
required | object (OTSetInputs) The columns that have a set value. |
numSamples | integer >= 1 Default: 500 The number of predictions to make during the exploration of the input range space. If using categorical values in the sampleDefinition, numSamples must be at least the length of the largest list of values. This is to ensure all categorical values are samples at least once. If using only categoricals in the sampleDefinition, if all possible combinations of categorical values can be achieved before hitting the value of numSamples, then only this many will be returned. This is to avoid re-sampling combinations that have already been seen as the results will be identical. Neither the sampleDefinition nor the setInputs may contain a calculated column |
{- "sampleDefinition": {
- "B": {
- "type": "continuous",
- "range": [
- 0,
- 5
]
}, - "Size": {
- "type": "categorical",
- "values": [
- "big",
- "small"
]
}
}, - "setInputs": {
- "A": 0.57,
- "C": 0.43,
- "Colour": "Red"
}, - "numSamples": 5
}
{- "Size": {
- "fixedInputs": [
- {
- "name": "A",
- "value": 0.57
}, - {
- "name": "C",
- "value": 0.43
}, - {
- "name": "Colour",
- "value": "Red"
}, - {
- "name": "B",
- "value": 2.5
}
], - "sampledInputs": [
- {
- "name": "Size",
- "values": [
- "big",
- "small"
]
}
], - "predictedOutputs": [
- {
- "name": "D",
- "predictions": {
- "values": [
- 0.2,
- 0.8
], - "uncertainties": [
- 0.2,
- 0.3
]
}
}
]
}, - "B": {
- "fixedInputs": [
- {
- "name": "A",
- "value": 0.57
}, - {
- "name": "C",
- "value": 0.43
}, - {
- "name": "Colour",
- "value": "Red"
}, - {
- "name": "Size",
- "value": "big"
}
], - "sampledInputs": [
- {
- "name": "B",
- "values": [
- 1,
- 2,
- 3,
- 4,
- 5
]
}
], - "predictedOutputs": [
- {
- "name": "D",
- "predictions": {
- "values": [
- 0.1,
- 0.4,
- 0.5,
- 0.2,
- 0.3
], - "uncertainties": [
- 0.1,
- 0.4,
- 0.5,
- 0.2,
- 0.3
]
}
}
]
}
}
Get all suggest-additional jobs for a given model
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "uniqueSamples": true,
- "explorationExploitation": 0.8,
- "sourceColumns": [
- "w",
- "x"
], - "targetColumns": [
- "x",
- "y",
- "z"
], - "numSuggestions": 1,
- "sFactor": 1,
- "uncertaintyWeight": 0
}, - "status": "pending"
}
]
Suggest additional measurements in the form of new rows that could be added to the training dataset to improve future models
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
name | string Optional name to attach to the job. |
tags | Array of strings unique Optional tags to attach to the job. Array should contain unique strings. |
notes | string An optional free field for notes about the job. |
required | object (SampleDefinition) non-empty Dictionary defining the search space that is able to be explored. |
required | object (TargetFunction) non-empty Dictionary of (potentially multiple) targets to optimize against. The cost function for optimization can be considered to be 1 minus the probability of the given sample to achieve the targets. The probability function, for each target, accounts for the prediction and the uncertainty in that prediction. Using multiple targets, the overall cost function is 1 minus the probability that all targets are achieved; this is the product of the individual target probabilities. The key value should be a made up name to give the defined target. When importance is specified, the importance factors are included as linear weights on the probabilities in log-probability space. Only certain columns can be included in the targetFunction:
|
Array of Sum/Mean (object) or Ratio (object) or Weighted Sum/Mean (object) or Weighted Sum/Mean By (Inverse) Column (object) or Product (object) or Constant Sum (object) or Constant Weighted Sum (object) or Zero If Zero (object) or Weighted Ratio (object) (NewColumns) Deprecated Deprecated, use | |
Array of Sum/Mean (object) or Ratio (object) or Weighted Sum/Mean (object) or Weighted Sum/Mean By (Inverse) Column (object) or Product (object) or Constant Sum (object) or Constant Weighted Sum (object) or Zero If Zero (object) or Weighted Ratio (object) (DependentColumns) Define any dependent columns that exist in the dataset. Categorical columns cannot be dependant on other columns, nor can they have columns depending on them. The dependent column cannot also appear in the sampleDefinition nor setInputs, although this is not true for the 'zero if zero' case. | |
object (SetInputs) Define set values for columns. | |
numOptimizationSamples | integer >= 1 Default: 1000 The number of optimization samples that will be considered.
Defaults to |
optimizationMethod | string Default: "TPE" Enum: "TPE" "random" "powell" "nelder-mead" "l-bfgs-b" "bfgs" "conjugate gradient" "cobyla" "slsqp" "tnc" The following global optimization methods are available:
The following local optimization methods are available:
Defaults to |
uniqueSamples | boolean Default: true If true only return one suggested measurement for each sample. If false then multiple suggestions may appear for the same sample. |
explorationExploitation | number [ 0 .. 1 ] Default: 0.8 The desired tradeoff between 'exploration', at 0, or 'exploitation' at 1:
|
sourceColumns | Array of strings or null Default: [] A list of column headers which all appear in the model's training dataset. Suggested measurements will only be returned from these columns. Descriptor columns cannot be in sourceColumns. By default an empty array, in which case the sourceColumns will be same as targetColumns. If null then all the non-descriptor columns will be treated as the sourceColumns. |
targetColumns | Array of strings or null Default: [] A list of column headers which all appear in the model's training dataset. Suggested measurements will be targeted to best improve predictions for these columns. Descriptor columns cannot be in targetColumns. The targetColumns may or may not be distinct from the sourceColumns. By default an empty array, in which case the targetColumns will be those columns that appear in the targetFunction. If null then all the non-descriptor columns will be treated as the targetColumns. |
numSuggestions | integer [ 1 .. 10000 ] Default: 1 The maximum number of suggested measurements to return that will best improve predictions for the requested targetColumns. |
sFactor | number or null [ 0 .. 1 ] Where data is mostly missing, sFactor should take low values - when data is mostly complete, it should take higher values. If not given or null then sFactor will be set automatically, which is generally recommended. Adjusting sFactor can make significant differences to the suggestions returned. |
uncertaintyWeight | number ( 0 .. 1 ] Deprecated Weighting determining the importance of uncertainties for individual data points compared to inter-column relationships when calculating suggested measurements. If 0 then only column relationships are used to produce suggestions, while if 1 then uncertainties are treated as more important. Deprecated, this parameter is no longer supported. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "uniqueSamples": true,
- "explorationExploitation": 0.8,
- "sourceColumns": [
- "w",
- "x"
], - "targetColumns": [
- "x",
- "y",
- "z"
], - "numSuggestions": 1,
- "sFactor": 1,
- "uncertaintyWeight": 0
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get job metadata and, if available, the suggestions
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "uniqueSamples": true,
- "explorationExploitation": 0.8,
- "sourceColumns": [
- "w",
- "x"
], - "targetColumns": [
- "x",
- "y",
- "z"
], - "numSuggestions": 1,
- "sFactor": 1,
- "uncertaintyWeight": 0
}, - "status": "pending"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
name | string |
tags | Array of strings unique Optional tags to attach to the job. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the job |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get all suggest-historic jobs for a given model
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "parameters": {
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "numSuggestions": 1
}, - "status": "pending"
}
]
Suggest historic measurements from an existing dataset that are likely to meet user-specified target criteria. Predictions and uncertainties for missing values in the dataset are used to compute the probability that each historic measurement has of meeting the target criteria.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
name | string Optional name to attach to the job. |
tags | Array of strings unique Optional tags to attach to the job. Array should contain unique strings. |
notes | string An optional free field for notes about the job. |
datasetID required | string <uuid> The ID of a dataset to search within. The dataset must have the same column headers as the model's training dataset. |
required | object (HistoricTargetFunction) non-empty Dictionary of (potentially multiple) targets that returned samples should meet. If more than one target, the cost function from each will be multiplied together. The key value should be a made up name to give the defined target. |
numSuggestions required | integer [ 1 .. 500 ] The target number of rows to be returned. May return greater than this number where too many rows meet the criterion without any imputed values, and may return fewer if too few results are meet the provided criteria. If the provided criteria would return more than 500 rows, the sample will be truncated. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}
}, - "numSuggestions": 1
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get job metadata and, if available, the results
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "parameters": {
- "datasetID": "65738026-196a-4cf8-9661-9bd286e25a71",
- "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "numSuggestions": 1
}, - "status": "pending"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
name | string |
tags | Array of strings unique Optional tags to attach to the job. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the job |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Get all optimize jobs for given model ID
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
n_samples | integer [ 1 .. 10 ] Default: 1 Set number of samples to return (i.e. top N samples).
Only applies when the optimization status is |
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}, - "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "status": "pending"
}
]
Specify sample definition and target function to optimize for.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
required | object (SampleDefinition) non-empty Dictionary defining the search space that is able to be explored. |
required | object (TargetFunction) non-empty Dictionary of (potentially multiple) targets to optimize against. The cost function for optimization can be considered to be 1 minus the probability of the given sample to achieve the targets. The probability function, for each target, accounts for the prediction and the uncertainty in that prediction. Using multiple targets, the overall cost function is 1 minus the probability that all targets are achieved; this is the product of the individual target probabilities. The key value should be a made up name to give the defined target. When importance is specified, the importance factors are included as linear weights on the probabilities in log-probability space. Only certain columns can be included in the targetFunction:
|
Array of Sum/Mean (object) or Ratio (object) or Weighted Sum/Mean (object) or Weighted Sum/Mean By (Inverse) Column (object) or Product (object) or Constant Sum (object) or Constant Weighted Sum (object) or Zero If Zero (object) or Weighted Ratio (object) (NewColumns) Deprecated Deprecated, use | |
Array of Sum/Mean (object) or Ratio (object) or Weighted Sum/Mean (object) or Weighted Sum/Mean By (Inverse) Column (object) or Product (object) or Constant Sum (object) or Constant Weighted Sum (object) or Zero If Zero (object) or Weighted Ratio (object) (DependentColumns) Define any dependent columns that exist in the dataset. Categorical columns cannot be dependant on other columns, nor can they have columns depending on them. The dependent column cannot also appear in the sampleDefinition nor setInputs, although this is not true for the 'zero if zero' case. | |
object (SetInputs) Define set values for columns. | |
numOptimizationSamples | integer >= 1 Default: 1000 The number of optimization samples that will be considered.
Defaults to |
optimizationMethod | string Default: "TPE" Enum: "TPE" "random" "alchemite" "local alchemite" "powell" "nelder-mead" "l-bfgs-b" "bfgs" "conjugate gradient" "cobyla" "slsqp" "tnc" The following global optimization methods are available:
The following local optimization methods are available:
|
name | string Optional name to attach to the optimization. |
tags | Array of strings unique Optional tags to attach to the optimization. Array should contain unique strings. |
notes | string An optional free field for notes about the optimisation job. |
{- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Request information about an optimize job.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
n_samples | integer [ 1 .. 10 ] Default: 1 Set number of samples to return (i.e. top N samples).
Only applies when the optimization status is |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}, - "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "status": "pending"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
name | string |
tags | Array of strings unique Optional tags to attach to the job. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the job |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
job_id required | string <uuid> Unique ID of the job |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Generate a PDF report for the chosen model. This report will contain statistical information on the training dataset, notable features of the model, and multiple plots explaining trends in the data.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the model. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Create new project and return the project ID associated with it.
A JSON object containing the name and metadata for the project.
name required | string |
tags | Array of strings unique Optional tags to attach to the project |
notes | string An optional free field for notes about the dataset |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
[- {
- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "createdAt": 0,
- "modelCount": 0,
- "suggestInitialCount": 0,
- "sharing": {
- "directGroups": [
- "string"
], - "owner": true
}
}
]
Get project data
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the project. |
{- "id": "00112233-4455-6677-8899-aabbccddeeff",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "createdAt": 0,
- "modelCount": 0,
- "suggestInitialCount": 0,
- "sharing": {
- "directGroups": [
- "string"
], - "owner": true
}
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the project. |
name | string |
tags | Array of strings unique Optional tags to attach to the project. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the project |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Deletes the project. Any associated resources will be removed from the project but continue to exist.
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the project. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Move a large number of models into or out of projects. If a model being moved into a project is already in another project, it will first be removed from its current project
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the project. |
add | Array of strings <uuid> non-empty unique [ items <uuid > ] List of model ids to add to the project |
remove | Array of strings <uuid> non-empty unique [ items <uuid > ] List of model ids to remove from the project |
{- "add": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "remove": [
- "00112233-4455-6677-8899-aabbccddeeff"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Move a large number of suggest-initial jobs into or out of projects. If a suggest-initial jobs being moved into a project is already in another project, it will first be removed from its current project
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the project. |
add | Array of strings <uuid> non-empty unique [ items <uuid > ] List of suggest-initial job ids to add to the project |
remove | Array of strings <uuid> non-empty unique [ items <uuid > ] List of suggest-initial job ids to remove from the project |
{- "add": [
- "00112233-4455-6677-8899-aabbccddeeff"
], - "remove": [
- "00112233-4455-6677-8899-aabbccddeeff"
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Returns all suggest-additional, suggest-historic and optimize jobs matching the query passed.
offset | integer >= 0 Default: 0 The number of items to skip before starting to collect the result set. |
limit | integer [ 1 .. 100 ] Default: 20 The number of items to return. |
types required | Array of strings non-empty unique Items Enum: "optimize" "suggest-additional" "suggest-historic" The types of jobs to return |
Array of objects = 1 items Sort the result by the job's attributes. | |
object non-empty Filter jobs based on job and model attributes. Note that currently each filter is AND'ed. If a requested job type doesn't have the required attribute, it will be omitted from the results |
{- "types": [
- "optimize"
], - "sort": [
- {
- "name": "name",
- "direction": "asc"
}
], - "filters": {
- "name": "string",
- "status": "pending",
- "tags": [
- "string"
], - "numOptimizationSamples": 0,
- "numSuggestions": 0,
- "explorationExploitation": 0,
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "transitiveModelId": "00112233-4455-6677-8899-aabbccddeeff",
- "excludeModelId": "00112233-4455-6677-8899-aabbccddeeff",
- "modelId": "00112233-4455-6677-8899-aabbccddeeff",
- "search": "string",
- "jobIds": [
- "00112233-4455-6677-8899-aabbccddeeff"
]
}
}
{- "total": 0,
- "result": [
- {
- "modelId": "17563eeb-82d7-4210-ac9b-1a20c7d67278",
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
], - "start": 12
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}, - "start": "option 1"
}, - "variable 2": {
- "type": "weighted categorical",
- "range": [
- 100,
- 250
], - "values": {
- "option 1": {
- "column 1": 3,
- "column 2": 1
}, - "option 2": {
- "column 1": -6,
- "column 2": 3.75
}
}
}, - "composition 1": {
- "type": "composition",
- "total": 1,
- "max": 1,
- "hardLimit": true,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}, - "composition 2": {
- "type": "composition",
- "min": 1,
- "values": {
- "option 1": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}, - "option 2": {
- "type": "continuous",
- "range": [
- 0,
- 1
]
}
}
}
}, - "targetFunction": {
- "property1": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}, - "property2": {
- "maximum": 0,
- "target": "string",
- "importance": 1,
- "vectorElement": 1,
- "type": "below"
}
}, - "newColumns": [
- {
- "newColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "dependentColumns": [
- {
- "dependentColumnName": "string",
- "function": "sum",
- "arguments": [
- "string",
- "string"
]
}
], - "setInputs": {
- "column 1": 100,
- "column 2": [
- 1,
- 2,
- 3
], - "column 3": "blue"
}, - "numOptimizationSamples": 1000,
- "optimizationMethod": "TPE",
- "uniqueSamples": true,
- "explorationExploitation": 0.8,
- "sourceColumns": [
- "w",
- "x"
], - "targetColumns": [
- "x",
- "y",
- "z"
], - "numSuggestions": 1,
- "sFactor": 1,
- "uncertaintyWeight": 0
}, - "status": "pending",
- "type": "suggest-additional"
}
]
}
Create new reference to a favourite job and optionally favourite result within the job
jobID required | string <uuid> The ID of the job being marked as a favourite |
resultIndices | Array of integers The indices of the favourite results in the favourited job |
{- "jobID": "9d2fedc8-0aa5-417a-9010-924207d2319b",
- "resultIndices": [
- 0
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Returns specified jobs marked as favourited
object non-empty Filter favourite jobs based on model attributes. |
{- "filters": {
- "transitiveModelId": "00112233-4455-6677-8899-aabbccddeeff"
}
}
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "jobID": "9d2fedc8-0aa5-417a-9010-924207d2319b",
- "resultIndices": [
- 0
], - "modelID": "17448b37-e359-404a-84aa-35f10765ba44"
}
]
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the favourite resource. |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "jobID": "9d2fedc8-0aa5-417a-9010-924207d2319b",
- "resultIndices": [
- 0
], - "modelID": "17448b37-e359-404a-84aa-35f10765ba44"
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the favourite resource. |
resultIndices | Array of integers The indices of the favourite results in the favourited job. This will replace the previous value for resultIndices on the job |
{- "resultIndices": [
- 0
]
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
id required | string <uuid> Example: 00112233-4455-6677-8899-aabbccddeeff Unique identifier for the favourite resource. |
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Suggest initial DoE experiments without a trained model Performing the suggested experiments could serve as the basis for an initial dataset to train a model with.
name | string Optional name to attach to the job. |
tags | Array of strings unique Optional tags to attach to the job. Array should contain unique strings. |
notes | string An optional free field for notes about the job. |
projectId | string <uuid> |
required | object (SISampleDefinition) non-empty Definition of the search space that can be explored. |
numSuggestions | integer [ 1 .. 10000 ] Default: 2 The number of suggested measurements to return. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
]
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 2": 3
}, - "option 2": {
- "column 2": -6
}
}
}
}, - "numSuggestions": 2
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
[- {
- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
]
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 2": 3
}, - "option 2": {
- "column 2": -6
}
}
}
}, - "numSuggestions": 2
}, - "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "status": "pending"
}
]
Get suggest-initial job data
job_id required | string <uuid> Unique ID of the job |
{- "id": "497f6eca-6276-4993-bfeb-53cbbbba6f08",
- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "enqueueTime": 0,
- "startTime": 0,
- "endTime": 0,
- "parameters": {
- "sampleDefinition": {
- "column 1": {
- "type": "continuous",
- "range": [
- -10,
- 15.5
]
}, - "variable 1": {
- "type": "categorical",
- "values": {
- "option 1": {
- "column 2": 3
}, - "option 2": {
- "column 2": -6
}
}
}
}, - "numSuggestions": 2
}, - "projectId": "00112233-4455-6677-8899-aabbccddeeff",
- "sharing": {
- "inheritedGroups": [
- "string"
], - "inheritedOwner": true,
- "owner": true
}, - "status": "pending"
}
job_id required | string <uuid> Unique ID of the job |
name | string |
tags | Array of strings unique Optional tags to attach to the job. This replaces any previous tags that may exist |
notes | string An optional free field for notes about the job |
projectId | string or null <uuid> The project this job belongs to. The user must have permission to see the respective project to set this value. Set to null to remove from current project. |
{- "name": "string",
- "tags": [
- "string"
], - "notes": "string",
- "projectId": "00112233-4455-6677-8899-aabbccddeeff"
}
{- "status": 404,
- "title": "Model ID not found",
- "detail": "The model ID 00112233-4455-6677-8899-aabbccddeeff does not exist",
}
Returns all rows matching the query passed. Will only return results on datasets that are in the 'uploaded' state.
offset | integer >= 0 Default: 0 The number of items to skip before starting to collect the result set. |
limit | integer [ 1 .. 5000 ] Default: 20 The number of items to return. |
type required | string Value: "dataset" |
id required | string (Dataset ID) |
object non-empty Filter on dataset columns.
Filtering a column on | |
Exclude list (object) or Include list (object) Select which columns to return. If not given than all columns will be returned. | |
Array of objects Sort result by the dataset column values. This sorts everything by the first column in list first, and then by the subsequent column whenever the previous column has two or more equal values, i.e. to break ties. If not set, the order is unknown but will be consistent across equal queries. It's currently not possible to sort on vector columns. | |
object |
Simple query description
{- "type": "dataset",
- "id": "7d96832c-7f9c-489a-8db1-6957dbdbb1a2",
- "rowIDs": {
- "values": [
- "Carbon 1",
- "Carbon 2"
], - "strictSearch": true
}
}
{- "type": "dataset",
- "total": 1,
- "result": [
- {
- "rowID": "row_id_1",
- "data": [
- {
- "name": "column_A",
- "value": 0
}, - {
- "name": "column_B",
- "vectorValue": null
}, - {
- "name": "column_C",
- "value": null
}, - {
- "name": "column_D",
- "vectorValue": ";2;3"
}, - {
- "name": "column_E",
- "categoricalValue": "red"
}
]
}
]
}