Alchemite (0.19.0)

Download OpenAPI specification:Download

Authentication

oauth

Security Scheme Type OAuth2
authorizationCode OAuth Flow
Authorization URL: /auth/realms/master/protocol/openid-connect/auth
Token URL: /auth/realms/master/protocol/openid-connect/token
Scopes:
  • alchemiteapi.datasets.write -

    Write/delete datasets

  • alchemiteapi.datasets.read -

    Read dataset metadata

  • alchemiteapi.datasets.download -

    Download full dataset

  • alchemiteapi.datasets.share -

    Share dataset with group

  • alchemiteapi.models.write -

    Write/train/delete models

  • alchemiteapi.models.read -

    Read model metadata

  • alchemiteapi.models.log -

    Read model log

  • alchemiteapi.models.export -

    Export model

  • alchemiteapi.models.load -

    Load/unload model from memory

  • alchemiteapi.models.importance -

    Get column importance

  • alchemiteapi.models.impute -

    Use model to impute dataset

  • alchemiteapi.models.validate -

    Use model to validate dataset

  • alchemiteapi.models.suggest-missing -

    Use model to suggest new measurements

  • alchemiteapi.models.optimize.create -

    Create optimize job

  • alchemiteapi.models.optimize.read -

    Read existing optimize job

  • alchemiteapi.models.optimize.delete -

    Delete optimize job

  • alchemiteapi.models.suggest-additional.create -

    Create suggest-additional job

  • alchemiteapi.models.suggest-additional.read -

    Read existing suggest-additional job

  • alchemiteapi.models.suggest-additional.delete -

    Delete suggest-additional job

  • alchemiteapi.models.share -

    Share model with group

implicit OAuth Flow
Authorization URL: /auth/realms/master/protocol/openid-connect/auth
Scopes:
  • alchemiteapi.datasets.write -

    Write/delete datasets

  • alchemiteapi.datasets.read -

    Read dataset metadata

  • alchemiteapi.datasets.download -

    Download full dataset

  • alchemiteapi.datasets.share -

    Share dataset with group

  • alchemiteapi.models.write -

    Write/train/delete models

  • alchemiteapi.models.read -

    Read model metadata

  • alchemiteapi.models.log -

    Read model log

  • alchemiteapi.models.export -

    Export model

  • alchemiteapi.models.load -

    Load/unload model from memory

  • alchemiteapi.models.importance -

    Get column importance

  • alchemiteapi.models.impute -

    Use model to impute dataset

  • alchemiteapi.models.validate -

    Use model to validate dataset

  • alchemiteapi.models.suggest-missing -

    Use model to suggest new measurements

  • alchemiteapi.models.optimize.create -

    Create optimize job

  • alchemiteapi.models.optimize.read -

    Read existing optimize job

  • alchemiteapi.models.optimize.delete -

    Delete optimize job

  • alchemiteapi.models.suggest-additional.create -

    Create suggest-additional job

  • alchemiteapi.models.suggest-additional.read -

    Read existing suggest-additional job

  • alchemiteapi.models.suggest-additional.delete -

    Delete suggest-additional job

  • alchemiteapi.models.share -

    Share model with group

password OAuth Flow
Token URL: /auth/realms/master/protocol/openid-connect/token
Scopes:
  • alchemiteapi.datasets.write -

    Write/delete datasets

  • alchemiteapi.datasets.read -

    Read dataset metadata

  • alchemiteapi.datasets.download -

    Download full dataset

  • alchemiteapi.datasets.share -

    Share dataset with group

  • alchemiteapi.models.write -

    Write/train/delete models

  • alchemiteapi.models.read -

    Read model metadata

  • alchemiteapi.models.log -

    Read model log

  • alchemiteapi.models.export -

    Export model

  • alchemiteapi.models.load -

    Load/unload model from memory

  • alchemiteapi.models.importance -

    Get column importance

  • alchemiteapi.models.impute -

    Use model to impute dataset

  • alchemiteapi.models.validate -

    Use model to validate dataset

  • alchemiteapi.models.suggest-missing -

    Use model to suggest new measurements

  • alchemiteapi.models.optimize.create -

    Create optimize job

  • alchemiteapi.models.optimize.read -

    Read existing optimize job

  • alchemiteapi.models.optimize.delete -

    Delete optimize job

  • alchemiteapi.models.suggest-additional.create -

    Create suggest-additional job

  • alchemiteapi.models.suggest-additional.read -

    Read existing suggest-additional job

  • alchemiteapi.models.suggest-additional.delete -

    Delete suggest-additional job

  • alchemiteapi.models.share -

    Share model with group

clientCredentials OAuth Flow
Token URL: /auth/realms/master/protocol/openid-connect/token
Scopes:
  • alchemiteapi.datasets.write -

    Write/delete datasets

  • alchemiteapi.datasets.read -

    Read dataset metadata

  • alchemiteapi.datasets.download -

    Download full dataset

  • alchemiteapi.datasets.share -

    Share dataset with group

  • alchemiteapi.models.write -

    Write/train/delete models

  • alchemiteapi.models.read -

    Read model metadata

  • alchemiteapi.models.log -

    Read model log

  • alchemiteapi.models.export -

    Export model

  • alchemiteapi.models.load -

    Load/unload model from memory

  • alchemiteapi.models.importance -

    Get column importance

  • alchemiteapi.models.impute -

    Use model to impute dataset

  • alchemiteapi.models.validate -

    Use model to validate dataset

  • alchemiteapi.models.suggest-missing -

    Use model to suggest new measurements

  • alchemiteapi.models.optimize.create -

    Create optimize job

  • alchemiteapi.models.optimize.read -

    Read existing optimize job

  • alchemiteapi.models.optimize.delete -

    Delete optimize job

  • alchemiteapi.models.suggest-additional.create -

    Create suggest-additional job

  • alchemiteapi.models.suggest-additional.read -

    Read existing suggest-additional job

  • alchemiteapi.models.suggest-additional.delete -

    Delete suggest-additional job

  • alchemiteapi.models.share -

    Share model with group

Datasets

Uploading and downloading datasets for training.

Upload or start uploading a dataset

Create a dataset for a model to train on and return the dataset ID. If the 'data' parameter is not given in the JSON request body then it will be assumed that the data is to be uploaded later in chunks. In this case the parameter 'status' in the dataset metadata will be set to 'uploading', otherwise it will be set to 'uploaded'.

Authorizations:
oauth (alchemiteapi.datasets.write)
Request Body schema: application/json
name
required
string
revisesId
string

The UUID of the dataset this revisesId (it's parent).

rowCount
required
integer

The number of rows in the array, not including column headers.

columnHeaders
required
Array of strings

List of all column headers in the order they appear in the dataset.

Array of objects (CategoricalColumn) Nullable

The possible categorical values for each categorical column

descriptorColumns
required
Array of integers

List of length equal to the number of columns where each element is 1 or 0. A value of 1 denotes that the corresponding column is a descriptor column. A descriptor column is an input-only column whose values will not need to be predicted.

measurementGroups
Array of integers Nullable

A "measurement group" is a group of columns that are usually measured at the same time. So when making predictions for one of these columns it is expected that the other columns in the measurement group will not be present. The measurementGroups argument can be specified to avoid training a model that relies on values in a measurement group to predict other values in the same group.

measurementGroups is a list of length equal to the number columns in the training dataset specifying which measurement group (denoted by in integer) each column belongs to. The order of measurementGroups must correspond to the training dataset's 'columnHeaders' parameter. Descriptor columns should be included in measurementGroups but they will always be used, regardless of the measurement group they are in.

For example, if measurementGroups=[1,2,3,1] then the first and last columns are expected to be known simultaniously and so are in the same measurement group, while the second and third columns may be known or unknown regardles of the knowledge of other columns and so are in their own measurement groups.

If measurementGroups is not provided then it is assumed that every column is in its own measurement group.

data
string

A string in CSV format corresponding to a 2D array with row and column headers. Row and column headers must be unique.

Sets of 2D vectors can be included by mapping each axis to a column and separating the values corresponding to each vector with a semicolon. If these vectors are used in the dataset then the columns which are paired as vectors must be provided in the 'vectorPairs' argument as part of the POST request.

In the example below the 'time' and 'temperature' columns are paired as vectors so in the first line their values map to the vectors (0,10), (1,28), (2,35), (4,42).

, heat applied, time , temperature A, 30 , 0;1;2;4, 10;28;35;42 B, 10 , 0;5 , 10;18

vectorPairs
Array of Array of strings unique Nullable

A list of pairs of column names. The columns in each pair are the axes for a 2D coordinate system.

Responses

Request samples

Content type
application/json
{
  • "name": "string",
  • "revisesId": "00112233-4455-6677-8899-aabbccddeeff",
  • "rowCount": 0,
  • "columnHeaders": [
    ],
  • "categoricalColumns": [
    ],
  • "descriptorColumns": [
    ],
  • "measurementGroups": [
    ],
  • "data": ",C,Ni,Si,Young's modulus,Resistivity\nCarbon steel 1,0.105,0,0,209.9,14.4\nCarbon steel 2,0.2,,0,,17\nLow alloy steel,,0,0.25,206.4,22.40\n",
  • "vectorPairs": [
    ]
}

Response samples

Content type
application/json
{}

List the metadata for every dataset

Authorizations:
oauth (alchemiteapi.datasets.read)

Responses

Response samples

Content type
application/json
[
  • {